AIC under the framework of least squares estimation

نویسندگان

  • H. T. Banks
  • Michele L. Joyner
چکیده

In this note we explain the use of the Akiake Information Criterion and its related model comparison indices (usually derived for maximum likelihood estimator inverse problem formulations) for use with least squares (ordinary, weighted, iterative weighted or ”generalized”, etc.) based inverse problem formulations. The ideas are illustrated with several examples of interest in biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the degrees of freedom in shrinkage estimation

We study the degrees of freedom in shrinkage estimation of the regression coefficients. Generalizing the idea of the Lasso, we consider the problem of estimating the coefficients by the projection of the ordinary least squares estimator onto a closed convex set. Then an unbiased estimator of the degrees of freedom is derived in terms of geometric quantities under a smoothness condition on the b...

متن کامل

Large Scale Experiments Data Analysis for Estimation of Hydrodynamic Force Coefficients Part 1: Time Domain Analysis

This paper describes various time-domain methods useful for analyzing the experimental data obtained from a circular cylinder force in terms of both wave and current for estimation of the drag and inertia coefficients applicable to the Morison’s equation. An additional approach, weighted least squares method is also introduced. A set of data obtained from experiments on heavily roughened circul...

متن کامل

On the “degrees of Freedom” of the Lasso By

We study the effective degrees of freedom of the lasso in the framework of Stein’s unbiased risk estimation (SURE). We show that the number of nonzero coefficients is an unbiased estimate for the degrees of freedom of the lasso—a conclusion that requires no special assumption on the predictors. In addition, the unbiased estimator is shown to be asymptotically consistent. With these results on h...

متن کامل

Model Selection for Nonparametric Regression

Risk bounds are derived for regression estimation based on model selection over an unrestricted number of models. While a large list of models provides more flexibility, significant selection bias may occur with model selection criteria like AIC. We incorporate a model complexity penalty term in AIC to handle selection bias. Resulting estimators are shown to achieve a trade-off among approximat...

متن کامل

تحلیل حرکت جریانات دریائی در تصاویر حرارتی سطح آب دریا

Oceanographic images obtained from environmental satellites by a wide range of sensors allow characterizing natural phenomena through different physical measurements. For instance Sea Surface Temperature (SST) images, altimetry data and ocean color data can be used for characterizing currents and vortex structures in the ocean. The purpose of this thesis is to derive a relatively complete frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2017